Intercellular Mechanotransduction
نویسندگان
چکیده
منابع مشابه
Intercellular mechanotransduction during multicellular morphodynamics.
Multicellular structures are held together by cell adhesions. Forces that act upon these adhesions play an integral role in dynamically re-shaping multicellular structures during development and disease. Here, we describe different modes by which mechanical forces are transduced in a multicellular context: (i) indirect mechanosensing through compliant substratum, (ii) cytoskeletal 'tug-of-war' ...
متن کاملFlow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions.
Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces...
متن کاملTissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction.
Epithelial-mesenchymal transition (EMT) is a phenotypic change in which epithelial cells detach from their neighbors and become motile. Whereas soluble signals such as growth factors and cytokines are responsible for stimulating EMT, here we show that gradients of mechanical stress define the spatial locations at which EMT occurs. When treated with transforming growth factor (TGF)-beta, cells a...
متن کاملIntercellular Forces, and Adherens Junctions Flow Mechanotransduction Regulates Traction Forces
intact animal to the cellular, subcellular, and molecular levels. It is published 12 times a year (monthly) by the American lymphatics, including experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the publishes original investigations on the physiology of the heart, blood vessels, and AJP-Heart and Circulatory Physiology
متن کاملPannexin 1 Channels Play Essential Roles in Urothelial Mechanotransduction and Intercellular Signaling
Urothelial cells respond to bladder distension with ATP release, and ATP signaling within the bladder and from the bladder to the CNS is essential for proper bladder function. In other cell types, pannexin 1 (Panx1) channels provide a pathway for mechanically-induced ATP efflux and for ATP-induced ATP release through interaction with P2X7 receptors (P2X7Rs). We report that Panx1 and P2X7R are f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2018
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2017.11.3033